Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 138 entries in the Bibliography.


Showing entries from 51 through 100


2018

Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multisatellite Measurements

Magnetospheric plasma waves play a significant role in ring current and radiation belt dynamics, leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non-storm time dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected by Van Allen Probe A (Radiation Belt Storm Probes-A). We quantitatively analyze a conjunction event when Van Allen Probe A was located approximately along the same magnetic field line as MetOp-01, which detected simultaneous precipitation of >30 keV protons and energetic electrons over an unexpectedly broad energy range (>~30 keV). Multipoint observations together with quasi-linear theory provide direct evidence that the observed electron precipitation at higher energy (>~700 keV) is primarily driven by EMIC waves. However, the newly observed feature of the simultaneous electron precipitation extending down to ~30 keV is not supported by existing theories and raises an interesting question on whether EMIC waves can scatter such low-energy electrons.

Capannolo, L.; Li, W.; Ma, Q.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018GL078604

EMIC waves; energetic particle precipitation; pitch angle scattering; Radiation belts; Van Allen Probes; wave particle interactions

The Acceleration of Ultrarelativistic Electrons During a Small to Moderate Storm of 21 April 2017

The ultrarelativistic electrons (E > ~3 MeV) in the outer radiation belt received limited attention in the past due to sparse measurements. Nowadays, the Van Allen Probes measurements of ultrarelativistic electrons with high energy resolution provide an unprecedented opportunity to study the dynamics of this population. In this study, using data from the Van Allen Probes, we report significant flux enhancements of ultrarelativistic electrons with energies up to 7.7 MeV during a small to moderate geomagnetic storm. The underlying physical mechanisms are investigated by analyzing and simulating the evolution of electron phase space density. The results suggest that during this storm, the acceleration mechanism for ultrarelativistic electrons in the outer belt is energy-dependent: local acceleration plays the most important role in the flux enhancements of ~3\textendash5 MeV electrons, while inward radial diffusion is the main acceleration mechanism for ~7 MeV electrons at the center of the outer radiation belt.

Zhao, H.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.;

Published by: Geophysical Research Letters      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018GL078582

Energy-dependent acceleration; Geomagnetic storms; Inward radial diffusion; Local Acceleration; Radiation belts; Ultra-relativistic electrons; Van Allen Probes

Electron Distributions in Kinetic Scale Field Line Resonances: A Comparison of Simulations and Observations

Observations in kinetic scale field line resonances, or eigenmodes of the geomagnetic field, reveal highly field-aligned plateaued electron distributions. By combining observations from the Van Allen Probes and Cluster spacecraft with a hybrid kinetic gyrofluid simulation we show how these distributions arise from the nonlocal self-consistent interaction of electrons with the wavefield. This interaction is manifested as electron trapping in the standing wave potential. The process operates along most of the field line and qualitatively accounts for electron observations near the equatorial plane and at higher latitudes. In conjunction with the highly field-aligned plateaus, loss cone features are also evident, which result from the action of the upward-directed wave parallel electric field on the untrapped electron populations.

Damiano, P.A.; Chaston, C.C.; Hull, A.J.; Johnson, J.R.;

Published by: Geophysical Research Letters      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018GL077748

Alfven waves; field line resonances; kinetic effects; numerical modeling; particle trapping; Radiation belts; Van Allen Probes

Determining the mode, frequency, and azimuthal wave number of ULF waves during a HSS and moderate geomagnetic storm

Ultra-low frequency (ULF) waves play a fundamental role in the dynamics of the inner-magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale (MMS) mission, we characterize the evolution of ULF waves during a high-speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations (AFINO) code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the MMS spacecraft, we estimate the toroidal mode ULF azimuthal wave number throughout the geomagnetic storm. We concentrate on the toroidal mode as the HSSs compresses the day side magnetosphere resulting in an asymmetric magnetic field topology where toroidal mode waves can interact with energetic electrons. Analysis of the mode structure and wave numbers demonstrates that the generation of the observed ULF waves is a combination of externally driven waves, via the Kelvin-Helmholtz instability, and internally driven waves, via unstable ion distributions. Further analysis of the periods and toroidal azimuthal wave numbers suggests that these waves can couple with the core electron radiation belt population via the drift resonance during the storm. The azimuthal wave number and structure of ULF wave power (broadband or discrete) have important implications for the inner-magnetospheric and radiation belt dynamics.

Murphy, Kyle; Inglis, Andrew; Sibeck, David; Rae, Jonathan; Watt, Clare; Silveira, Marcos; Plaschke, Ferdinand; Claudepierre, Seth; Nakamura, Rumi;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2017JA024877

azimuthal wave number; Geomagnetic storms; mode structure; Radiation belts; ULF waves; Van Allen Probes

Electron nonlinear resonant interaction with short and intense parallel chorus wave-packets

One of the major drivers of radiation belt dynamics, electron resonant interaction with whistler-mode chorus waves, is traditionally described using the quasi-linear diffusion approximation. Such a description satisfactorily explains many observed phenomena, but its applicability can be justified only for sufficiently low intensity, long duration waves. Recent spacecraft observations of a large number of very intense lower band chorus waves (with magnetic field amplitudes sometimes reaching \~1\% of the background) therefore challenge this traditional description, and call for an alternative approach when addressing the global, long-term effects of the nonlinear interaction of these waves with radiation belt electrons. In this paper, we first use observations from the Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft to show that the majority of intense parallel chorus waves consists of relatively short wave-packets. Then, we construct a kinetic equation describing the nonlinear resonant interaction of radiation belt electrons with such short and intense wave-packets. We demonstrate that this peculiar type of nonlinear interaction produces similar effects as quasi-linear diffusion, i.e., a flattening of the electron velocity distribution function within a certain energy/pitch-angle range. The main difference is the much faster evolution of the electron distribution when nonlinear interaction prevails.

Mourenas, D.; Zhang, X.-J.; Artemyev, A.; Angelopoulos, V.; Thorne, R.; Bortnik, J.; Neishtadt, A.; Vasiliev, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018JA025417

chorus waves; ; kinetic equation; nonlinear interaction; Radiation belts; short wave-packets; trapping; Van Allen Probes

Global model of plasmaspheric hiss from multiple satellite observations

We present a global model of plasmaspheric hiss, using data from eight satellites, extending the coverage and improving the statistics of existing models. We use geomagnetic activity dependent templates to separate plasmaspheric hiss from chorus. In the region 22-14 MLT the boundary between plasmaspheric hiss and chorus moves to lower L* values with increasing geomagnetic activity. The average wave intensity of plasmaspheric hiss is largest on the dayside and increases with increasing geomagnetic activity from midnight through dawn to dusk. Plasmaspheric hiss is most intense and spatially extended in the 200-500 Hz frequency band during active conditions, 400

Meredith, Nigel; Horne, Richard; Kersten, Tobias; Li, Wen; Bortnik, Jacob; Sicard-Piet, elica; Yearby, Keith;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018JA025226

plasmasphere; Plasmaspheric Hiss; Radiation belts; Van Allen Probes

The global statistical response of the outer radiation belt during geomagnetic storms

Using the total radiation belt electron content calculated from Van Allen Probe phase space density (PSD), the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using PSD reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and non-adiabatic effects, and revealing a clear modality and repeatable sequence of events in storm-time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ) dependent behaviour in the seed (150 MeV/G), relativistic (1000 MeV/G), and ultra-relativistic (4000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, whilst the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ-dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

Murphy, Kyle; Watt, C.; Mann, Ian; Rae, Jonathan; Sibeck, David; Boyd, A.; Forsyth, C.; Turner, D.; Claudepierre, S.; Baker, D.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 04/2018

YEAR: 2018     DOI: 10.1002/2017GL076674

Geomagnetic storms; magnetospheric dynamics; Radiation belts; Solar Wind-Magnetosphere Coupling; statistical analysis; Van Allen Probes

On the role of last closed drift shell dynamics in driving fast losses and Van Allen radiation belt extinction

We present observations of very fast radiation belt loss as resolved using high-time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The timescale of these losses is revealed to be as short as \~0.5 - 2 hours during intense magnetic storms, with some storms demonstrating almost total loss on these timescales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around two weeks. By contrast, the moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. We compute the last closed drift shell (LCDS) for each of these four storms and show a very strong correspondence between the LCDS and the loss patterns of trapped electrons in each storm. Most significantly, the location of the LCDS closely mirrors the high time resolution losses observed in GPS flux. The fast losses occur on a timescale shorter than the Van Allen Probes orbital period, are explained by proximity to the LCDS, and progress inward, consistent with outward transport to the LCDS by fast ULF wave radial diffusion. Expressing the location of the LCDS in L*, and not model magnetopause standoff distance in units of RE, clearly reveals magnetopause shadowing as the cause of the fast loss observed by the GPS satellites.

Olifer, L.; Mann, I.; Morley, S.; Ozeke, L.; Choi, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2018JA025190

inner magnetosphere; magnetopause shadowing; Radiation belts; Van Allen Probes

A census of plasma waves and structures associated with an injection front in the inner magnetosphere

Now that observations have conclusively established that the inner magnetosphere is abundantly populated with kinetic electric field structures and nonlinear waves, attention has turned to quantifying the ability of these structures and waves to scatter and accelerate inner magnetospheric plasma populations. A necessary step in that quantification is determining the distribution of observed structure and wave properties (e.g. occurrence rates, amplitudes, spatial scales). Kinetic structures and nonlinear waves have broadband signatures in frequency space and consequently, high resolution time domain electric and magnetic field data is required to uniquely identify such structures and waves as well as determine their properties. However, most high resolution fields data is collected with a strong bias toward high amplitude signals in a pre-selected frequency range, strongly biasing observations of structure and wave properties. In this study, a \~45 minute unbroken interval of 16,384 samples/s fields burst data, encompassing an electron injection event, is examined. This data set enables an unbiased census of the kinetic structures and nonlinear waves driven by this electron injection, as well as determination of their \textquotelefttypical\textquoteright properties. It is found that the properties determined using this unbiased burst data are considerably different than those inferred from amplitude-biased burst data, with significant implications for wave-particle interactions due to kinetic structures and nonlinear waves in the inner magnetosphere.

Malaspina, David; Ukhorskiy, Aleksandr; Chu, Xiangning; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2018

YEAR: 2018     DOI: 10.1002/2017JA025005

Electron Injection; inner magnetosphere; Kinetic structures; Plasma Boundaries; plasma waves; Radiation belts; Van Allen Probes

Coordinates for Representing Radiation Belt Particle Flux

Fifty years have passed since the parameter \textquotedblleftL-star\textquotedblright was introduced in geomagnetically trapped particle dynamics. It is thus timely to review the use of adiabatic theory in present-day studies of the radiation belts, with the intention of helping to prevent common misinterpretations and the frequent confusion between concepts like \textquotedblleftdistance to the equatorial point of a field line,\textquotedblright McIlwain\textquoterights L-value, and the trapped particle\textquoterights adiabatic L* parameter. And too often do we miss in the recent literature a proper discussion of the extent to which some observed time and space signatures of particle flux could simply be due to changes in magnetospheric field, especially insofar as off-equatorial particles are concerned. We present a brief review on the history of radiation belt parameterization, some \textquotedblleftrecipes\textquotedblright on how to compute adiabatic parameters, and we illustrate our points with a real event in which magnetospheric disturbance is shown to adiabatically affect the particle fluxes measured onboard the Van Allen Probes.

Roederer, Juan; Lejosne, ène;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2018

YEAR: 2018     DOI: 10.1002/2017JA025053

adiabatic coordinates; Radiation belts; Van Allen Probes

Radiation belt \textquotedblleftdropouts\textquotedblright and drift-bounce resonances in broadband electromagnetic waves

Observations during the main phase of geomagnetic storms reveal an anti-correlation between the occurrence of broadband low frequency electromagnetic waves and outer radiation belt electron flux. We show that the drift-bounce motion of electrons in the magnetic field of these waves leads to rapid electron transport. For observed spectral energy densities it is demonstrated that the wave magnetic field can drive radial diffusion via drift-bounce resonance on timescales less than a drift orbit. This process may provide outward transport sufficient to account for electron \textquotedblleftdropouts\textquotedblright during storm main phase and more generally modulate the outer radiation belt during geomagnetic storms.

Chaston, C.; Bonnell, J.; Wygant, J.; Reeves, G.; Baker, D.; Melrose, D.;

Published by: Geophysical Research Letters      Published on: 02/2018

YEAR: 2018     DOI: 10.1002/2017GL076362

Alfven waves; Geomagnetic storms; Radial Transport; Radiation belts; Van Allen Probes

2017

Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)

Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L-shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32\textdegree < MLat < -15\textdegree), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLat ~ -31\textdegree). Most of the elements had \textquotedbllefthook\textquotedblright like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent allowing for the direct calculation of k. Error estimates on calculated k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30\textdegree from the direction anti-parallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.

Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024474

chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes

A Statistical Study of the Spatial Extent of Relativistic Electron Precipitation with Polar Orbiting Environmental Satellites.

Relativistic Electron Precipitation (REP) in the atmosphere can contribute significantly to electron loss from the outer radiation belts. In order to estimate the contribution to this loss, it is important to estimate the spatial extent of the precipitation region. We observed REP with the zenith pointing (0o) Medium Energy Proton Electron Detector (MEPED) on board Polar Orbiting Environmental Satellites (POES), for 15 years (2000-2014) and used both single and multi satellite measurements to estimate an average extent of the region of precipitation in L shell and Magnetic Local Time (MLT). In the duration of 15 years (2000-2014), 31035 REP events were found in this study. Events were found to split into two classes; one class of events coincided with proton precipitation in the P1 channel (30-80 keV), were located in the dusk and early morning sector, and were more localized in L shell (dL<0.5), whereas the other class of events did not coincide with proton precipitation, were located mostly in the midnight sector and were wider in L shell (dL \~ 1-2.5). Both classes were highly localized in MLT (dMLT <= 3 hrs), occuring mostly during the declining phase of the solar cycle and geomagnetically active times. The events located in the midnight sector for both classes were found to be associated with tail magnetic field stretching which could be due to the fact that they tend to occur mostly during geomagnetically active times, or could imply that precipitation is caused by current sheet scattering.

Shekhar, Sapna; Millan, Robyn; Smith, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024716

Magnetosphere; precipitation; Radiation belts; relativistic electrons; spatial scale of REP; Van Allen Probes; wave particle scattering

On the effect of geomagnetic storms on relativistic electrons in the outer radiation belt: Van Allen Probes observations

Using Van Allen Probes ECT-REPT observations we performed a statistical study on the effect of geomagnetic storms on relativistic electrons fluxes in the outer radiation belt for 78 storms between September 2012 and June 2016. We found that the probability of enhancement, depletion and no change in flux values depends strongly on L and energy. Enhancement events are more common for \~ 2 MeV electrons at L \~ 5, and the number of enhancement events decreases with increasing energy at any given L shell. However, considering the percentage of occurrence of each kind of event, enhancements are more probable at higher energies, and the probability of enhancement tends to increases with increasing L shell. Depletion are more probable for 4-5 MeV electrons at the heart of the outer radiation belt, and no change events are more frequent at L < 3.5 for E\~ 3 MeV particles. Moreover, for L > 4.5 the probability of enhancement, depletion or no-change response presents little variation for all energies. Because these probabilities remain relatively constant as a function of radial distance in the outer radiation belt, measurements obtained at Geosynchronous orbit may be used as a proxy to monitor E>=1.8 MeV electrons in the outer belt.

Moya, Pablo.; Pinto, \; Sibeck, David; Kanekal, Shrikanth; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024735

Geomagnetic storms; Radiation belts; relativistic electrons; Van Allen Probes

Signatures of Ultrarelativistic Electron Loss in the Heart of the Outer Radiation Belt Measured by Van Allen Probes

Up until recently, signatures of the ultrarelativistic electron loss driven by electromagnetic ion cyclotron (EMIC) waves in the Earth\textquoterights outer radiation belt have been limited to direct or indirect measurements of electron precipitation or the narrowing of normalized pitch angle distributions in the heart of the belt. In this study, we demonstrate additional observational evidence of ultrarelativistic electron loss that can be driven by resonant interaction with EMIC waves. We analyzed the profiles derived from Van Allen Probe particle data as a function of time and three adiabatic invariants between 9 October and 29 November 2012. New local minimums in the profiles are accompanied by the narrowing of normalized pitch angle distributions and ground-based detection of EMIC waves. Such a correlation may be indicative of ultrarelativistic electron precipitation into the Earth\textquoterights atmosphere caused by resonance with EMIC waves.

Aseev, N.; Shprits, Y; Drozdov, A; Kellerman, A.; Usanova, M.; Wang, D.; Zhelavskaya, I.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024485

electron loss; EMIC waves; Radiation belts; ultrarelativistic electrons; Van Allen Probes; wave-particle interactions

Empirical radiation belt models: Comparison with in-situ data and implications for environment definition

The empirical AP8/AE8 model has been the de-facto Earth\textquoterights radiation belts engineering reference for decades. The need from the community for a better model incubated the development of AP9/AE9/SPM, which addresses several shortcomings of the old model. We provide additional validation of AP9/AE9 by comparing in-situ electron and proton data from Jason-2, POES, and the Van Allen Probes spacecraft with the 5th, 50th, and 95th percentiles from AE9/AP9 and with the model outputs from AE8/AP8. The relatively short duration of Van Allen Probes and Jason-2 missions means that their measurements are most certainly the result of specific climatological conditions. In LEO, the Jason-2 proton flux is better reproduced by AP8 compared to AP9, while the POES electron data are well enveloped by AE9 5th and 95th percentiles. The shape of the SAA from Jason-2 data is better captured by AP9 compared to AP8, while the peak SAA flux is better reproduced by AP8. The <1.5 MeV inner belt electrons from MagEIS are well enveloped by AE9 5th and 95th percentiles while AE8 over-predicts the measurements. In the outer radiation belt, MagEIS and REPT electrons closely follow the median estimate from AE9, while AP9 5th and 95th percentiles generally envelope REPT proton measurements in the inner belt and slot regions. While AE9/AP9 offer the flexibility to specify the environment with different confidence levels, the dose and trapped proton peak flux for POES and Jason-2 trajectories from the AE9/AP9 50th percentile and above are larger than the estimates from the AE8/AP8 models.

Pich, Maria; Jun, Insoo; Evans, Robin;

Published by: Space Weather      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017SW001612

Empirical Models; Radiation belts; Radiation effects; Van Allen Probes

Rapid loss of radiation belt relativistic electrons by EMIC waves

How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth\textquoterights outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here, on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the EMIC wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the prediction of radial loss theory. The local loss at low L-shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L-shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region was able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.

Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024169

electron loss; EMIC waves; pitch angle scattering; radial diffusion; Radiation belts; Van Allen Probes; Wave-particle interaction

EMIC wave parameterization in the long-term VERB code simulation

Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE indices, solar wind speed, and dynamic pressure as possible parameters of EMIC wave presence. The EMIC waves are included in the long-term simulations (1 year, including different geomagnetic activity) performed with the Versatile Electron Radiation Belt code, and we compare results of the simulation with the Van Allen Probes observations. The comparison shows that modeling with EMIC waves, parameterized by solar wind dynamic pressure, provides a better agreement with the observations among considered parameterizations. The simulation with EMIC waves improves the dynamics of ultrarelativistic fluxes and reproduces the formation of the local minimum in the phase space density profiles.

Drozdov, A; Shprits, Y; Usanova, M.; Aseev, N.; Kellerman, A.; Zhu, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024389

EMIC; Radiation belts; Van Allen Probes; VERB code

Radial transport of radiation belt electrons in kinetic field-line resonances

A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfv\ en eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport of the order of hours in storm-time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular to the geomagnetic field. The correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggest they may modulate the outer radiation belt.

Chaston, C.; Bonnell, J.; Wygant, J.; Reeves, G.; Baker, D.; Melrose, D.; Cairns, Iver.;

Published by: Geophysical Research Letters      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017GL074587

Alfven waves; Diffusion; field line resonances; Radiation belts; Transport; Van Allen Probes

Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

We present an analysis of \textquotedblleftboomerang-shaped\textquotedblright pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90o pitch angle electrons, the phase change of the flux modulations across energy exceeds 180o, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S; Spence, H.; Blake, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017GL074006

drift resonance; interplanetary shock; localized waves; Radiation belts; ULF waves; Van Allen Probes; Wave-particle interaction

On the Relationship Between Electron Flux Oscillations and ULF Wave-Driven Radial Transport

The objective of this study is to investigate the relationship between the levels of electron flux oscillations and radial diffusion for different Phase Space Density (PSD) gradients, through observation and particle tracing simulations under the effect of model Ultra Low Frequency (ULF) fluctuations. This investigation aims to demonstrate that electron flux oscillation is associated with and could be used as an indicator of ongoing radial diffusion. To this direction, flux oscillations are observed through the Van Allen Probes\textquoteright MagEIS energetic particle detector; subsequently, flux oscillations are produced in a particle tracing model that simulates radial diffusion by using model magnetic and electric field fluctuations that are approximating measured magnetic and electric field fluctuations as recorded by the Van Allen Probes\textquoteright EMFISIS and EFW instruments, respectively. The flux oscillation amplitudes are then correlated with Phase Space Density gradients in the magnetosphere and with the ongoing radial diffusion process.

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Califf, Sam; Liu, Wenlong; Ergun, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2016JA023741

Flux Oscillations; MAGEis; EMFISIS; EFW; Phase space density; radial diffusion; Radiation belts; Van Allen Probes

Roles of hot electrons in generating upper-hybrid waves in the earth\textquoterights radiation belt

Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth\textquoterights radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magnetic Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical calculation, it is shown that the peak intensity associated with the upper-hybrid fluctuations might be predominantly determined by tenuous but hot electrons and that denser cold background electrons do not seem to contribute much to the peak intensity. This finding shows that upper-hybrid fluctuations detected during quiet time are not only useful for the determination of the background cold electron density but also contain information on the ambient hot electrons population as well.

Hwang, J.; Shin, D.; Yoon, P.; Kurth, W.; Larsen, B.; Reeves, G.; Lee, D;

Published by: Physics of Plasmas      Published on: 06/2017

YEAR: 2017     DOI: 10.1063/1.4984249

Hot carriers; Magnetized plasmas; Radiation belts; Singing; Van Allen Probes; Whistler waves

Effects of whistler mode hiss waves in March 2013

We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 hours and 0.1 L-shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L~5 up to ~2 MeV at L~2, and stop abruptly, similarly to the observed energy-dependent inner belt edge. Periods when the plasmasphere extends beyond L~5 favor long-lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker-Planck code and validated against MagEIS observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion and lifetime models. Validation is carried out globally at all L-shells and energies. The good agreement between simulations and observations demonstrates that hiss waves drive the slot formation during quiet times. Combined with transport, they sculpt the energy-structure of the outer belt into an "S-shape". Low energy electrons (<0.3 MeV) are less subject to hiss scattering below L=4. In contrast, 0.3-1.5 MeV electrons evolve in a environment that depopulates them as they migrate from L~5 to L~2.5. Ultra-relativistic electrons are not affected by hiss losses until L~2-3.

Ripoll, J.-F.; Santol?k, O.; Reeves, G.; Kurth, W.; Denton, M.; Loridan, V.; Thaller, S.; Kletzing, C.; Turner, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2017JA024139

diffusion coefficients; electron lifetimes; energy-structure; Radiation belts; Van Allen Probes; Whistler-mode hiss

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed 3 orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important\textemdashand potentially dominant\textemdashsource of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for >=100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day time scales, consistent with losses due to interactions with plasmaspheric hiss. Combined, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an \textquotedbllefton/off,\textquotedblright geomagnetic-activity-dependent source from higher radial distances.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kaneka, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1029/1999JA900445

energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport

Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert (2000) and Ozeke et al. (2014) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert (2000) and Ozeke et al. (2014), we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, including pitch angle, energy, and mixed diffusion. We found that the results of 3-D simulations are even less sensitive to the choice of parameterization of radial diffusion rates than the results of 1-D simulations at various energies (from 0.59 to 1.80 MeV). This result demonstrates that the inclusion of local acceleration and pitch angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.

Drozdov, A; Shprits, Y; Aseev, N.; Kellerman, A.; Reeves, G.;

Published by: Space Weather      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/swe.v15.110.1002/2016SW001426

radial diffusion; Radiation belts; Van Allen Probes; VERB code

2016

Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts

Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth\textquoterights radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two small storm periods 4\textendash6 April and 18\textendash20 May 2013 and show, using a 3-D ray tracing simulation, that AKR can propagate downward all the way into the equatorial plane in the radiation belts under appropriate conditions. The simulated results can successfully explain the observed AKR\textquoterights spatial distribution and frequency range, and the current results have a wide application to all other magnetized astrophysical objects in the universe.

Xiao, Fuliang; Zhou, Qinghua; Su, Zhenpeng; He, Zhaoguo; Yang, Chang; Liu, Si; He, Yihua; Gao, Zhonglei;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071728

AKR emissions; Geomagnetic storms; Radiation belts; ray tracing simulations; satellite data; Van Allen Probes

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L-shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than one day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed three orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important - and potentially dominant - source of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for >=100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day timescales, consistent with losses due to interactions with plasmaspheric hiss. Combined, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an \textquotedbllefton/off\textquotedblright, geomagnetic-activity-dependent source from higher radial distances.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kanekal, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023600

2720 Energetic Particles; trapped; 2730 Magnetosphere: inner; 2774 Radiation belts; 7807 Charged particle motion and acceleration; 7984 Space radiation environment; energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Prompt injections of highly relativistic electrons induced by interplanetary shocks: A statistical study of Van Allen Probes observations

We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25\% of IP shocks are associated with prompt energization, and 14\% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.

Schiller, Q.; Kanekal, S.; Jian, L.; Li, X.; Jones, A.; Baker, D.; Jaynes, A.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071628

electrons; IP shocks; Radiation belts; Van Allen Probes

The distribution of plasmaspheric hiss wave power with respect to plasmapause location

In this work, Van Allen Probes data are used to derive terrestrial plasmaspheric hiss wave power distributions organized by (1) distance away from the plasmapause and (2) plasmapause distance from Earth. This approach is in contrast to the traditional organization of hiss wave power by L parameter and geomagnetic activity. Plasmapause-sorting reveals previously unreported and highly repeatable features of the hiss wave power distribution, including a regular spatial distribution of hiss power with respect to the plasmapause, a standoff distance between peak hiss power and the plasmapause, and frequency-dependent spatial localization of hiss. Identification and quantification of these features can provide insight into hiss generation and propagation and will facilitate improved parameterization of hiss wave power in predictive simulations of inner magnetosphere dynamics.

Malaspina, David; Jaynes, Allison; e, Cory; Bortnik, Jacob; Thaller, Scott; Ergun, Robert; Kletzing, Craig; Wygant, John;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL069982

hiss; plasma waves; plasmasphere; Radiation belts; Van Allen Probes

Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size

Highly energetic electrons in the Earth\textquoterights Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 1300\textendash2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.810.1002/2016JA022775

distribution of chorus wave intensities in the inner magnetosphere; inner magnetosphere; Radiation belts; scale size of chorus wave packets; Van Allen Probes; Wave-particle interaction

The relationship between the plasmapause and outer belt electrons

We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15\textendash20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8\textendash7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1\textendash2 RE inside the plasmapause. Outer belt 2 is a dynamic zone of <3 MeV electrons within 0.5 RE of the moving plasmapause. Electron fluxes earthward of each belt\textquoterights peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, perhaps owing to shielding by the plasmasphere. Afterward, the partially depleted belt 1 continued to decay at the initial rate. Belt 2 was emptied out by strong disturbance-time losses but restored within 24 h. For global context we use a plasmapause test particle simulation and derive a new plasmaspheric index Fp, the fraction of a circular drift orbit inside the plasmapause. We find that the locally measured plasmapause is (for this event) a good proxy for the globally integrated opportunity for losses in cold plasma. Our analysis of the 15\textendash20 January 2013 time interval confirms that high-energy electron storage rings can persist for weeks or even months if prolonged quiet conditions prevail. This case study must be followed up by more general study (not limited to a 5 day period).

Goldstein, J.; Baker, D.; Blake, J.; De Pascuale, S.; Funsten, H.; Jaynes, A.; Jahn, J.-M.; Kletzing, C.; Kurth, W.; Li, W.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA023046

Plasmapause; Plasmaspheric Hiss; Radiation belts; simulation; storm-time dropouts; Van Allen Probes

A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection

An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front characteristics. It was seen that magnetospheric substorm activity provided a \textquotedblleftseed\textquotedblright electron population as observed by MMS particle sensors as multiple injections and related enhancements in electron flux.

Baker, D.; Jaynes, A.; Turner, D.; Nakamura, R.; Schmid, D.; Mauk, B.; Cohen, I.; Fennell, J.; Blake, J.; Strangeway, R.; Russell, C.; Torbert, R.; Dorelli, J.; Gershman, D.; Giles, B.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/grl.v43.1210.1002/2016GL069643

Magnetic reconnection; magnetospheres; Radiation belts; substorms; Van Allen Probes

On the Time Needed to Reach an Equilibrium Structure of the Radiation Belts

In this study, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as the radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τDiffusion/τloss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (<=3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp >= 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.

Ripoll, J.; Loridan, V.; Cunningham, G.; Reeves, G.; Shprits, Y;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/2015JA022207

Radiation belts; Van Allen Probes

What effect do substorms have on the content of the radiation belts?

Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV \textquotedblleftseed\textquotedblright population into the inner magnetosphere which is subsequently energized through wave-particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1\textendash3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM-H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels.

Forsyth, C.; Rae, I.; Murphy, K.; Freeman, M.; Huang, C.-L.; Spence, H.; Boyd, A.; Coxon, J.; Jackman, C.; Kalmoni, N.; Watt, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/2016JA022620

enhancements; losses; Radiation belts; substorm

Reproducing the observed energy-dependent structure of Earth s electron radiation belts during storm recovery with an event-specific diffusion model

We present dynamic simulations of energy-dependent losses in the radiation belt " slot region" and the formation of the two-belt structure for the quiet days after the March 1st storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally-resolved whistler mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L-shells (2 to 6) including (a) the strong energy-dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L-shells at lower energies and (c) an " S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the " S-shape" can also be reproduced by assuming equilibrium conditions. The highest energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4-5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L-shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L-shells and the need for using data-driven and event-specific conditions.

Ripoll, J.; Reeves, G.; Cunningham, G.; Loridan, V.; Denton, M.; ik, O.; Kurth, W.; Kletzing, C.; Turner, D.; Henderson, M.; Ukhorskiy, A;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL068869

electron lifetimes; electron losses; hiss waves; Radiation belts; Slot region; Van Allen Probes; wave particle interactions

Forecasting and remote sensing outer belt relativistic electrons from low Earth orbit

This study demonstrates the feasibility and reliability of using observations from low Earth orbit (LEO) to forecast and nowcast relativistic electrons in the outer radiation belt. We first report a high cross-energy, cross-pitch-angle coherence discovered between the trapped MeV electrons and precipitating approximately hundreds (~100s) of keV electrons\textemdashobserved by satellites with very different altitudes\textemdashwith correlation coefficients as high as ≳ 0.85. Based upon the coherence, we then tested the feasibility of applying linear prediction filters to LEO data to predict the arrival of new MeV electrons during geomagnetic storms, as well as their evolving distributions afterward. Reliability of these predictive filters is quantified by the performance efficiency with values as high as 0.74 when driven merely by LEO observations (or up to 0.94 with the inclusion of in situ MeV electron measurements). Finally, a hypothesis based upon the wave-particle resonance theory is proposed to explain the coherence, and a first-principle electron tracing model yields supporting evidence.

Chen, Yue; Reeves, Geoffrey; Cunningham, Gregory; Redmon, Robert; Henderson, Michael;

Published by: Geophysical Research Letters      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2015GL067481

forecast and nowcast; hundreds of keV precipitating electrons; LEO observations; Radiation belts; relativistic electrons; wave particle interactions

Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8-9 October 2012 storm: SAMPEX and Van Allen Probes observations

It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8\textendash9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that acceleration by chorus is much more efficient than losses by microbursts during the storm. It is also revealed that the strong chorus wave activity without relativistic electron microbursts does not lead to significant flux variations of relativistic electrons. Thus, effective acceleration of relativistic electrons is caused by chorus that can cause relativistic electron microbursts.

Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, Bernard; Reeves, Geoffery; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2016GL068260

Radiation belts; relativistic electron microbursts; relativistic electrons; SAMPEX; Van Allen Probes; whistler mode chorus

2015

Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt

Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of \~1\textendash10 keV electrons and their acceleration up to 100\textendash300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We demonstrate that the electron energy corresponding to the observed plateau remains in very good agreement with the energy required for Landau resonant interaction with the simultaneously measured oblique chorus waves over 6 h and a wide range of L shells (from 4 to 6) in the outer belt. The efficient parallel acceleration modifies electron pitch angle distributions at energies \~50\textendash200 keV, allowing us to distinguish the energized population. The observed energy range and the density of accelerated electrons are in reasonable agreement with test particle numerical simulations.

Agapitov, O.; Artemyev, A.; Mourenas, D.; Mozer, F.; Krasnoselskikh, V.;

Published by: Geophysical Research Letters      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015GL066887

Landau resonance; nonlinear acceleration of electrons; oblique whistlers; Radiation belts; seed population; Van Allen Probes

Wave-particle interactions in the outer radiation belts

Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space, with the associated rapid (fraction of a bounce period) electron acceleration, to hundreds of keV by Landau resonance, in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed.

Agapitov, O.~V.; Mozer, F.~S.; Artemyev, A.~V.; Mourenas, D.; Krasnoselskikh, V.~V.;

Published by: Advances in Astronomy and Space Physics      Published on: 12/2015

YEAR: 2015     DOI:

plasma waves and instabilities; Radiation belts; Van Allen Probes; Wave-particle interaction

Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.

We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner zone are more common at lower energies; and (d) Even when events do not fully fill the slot region, enhancements at lower-energies tend to extend to lower L-shells than higher energies. During enhancement events the outer zone extends to lower L-shells at lower energies while being confined to higher L-shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L-shells for lower energies. Both boundaries are nearly straight in log(energy) vs. L-shell space. At energies below a few hundred keV radiation belt electron penetration through the slot region into the inner zone is commonplace but the number and frequency of \textquotedblleftslot filling\textquotedblright events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L-shell dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.

Reeves, Geoffrey; Friedel, Reiner; Larsen, Brian; Skoug, Ruth; Funsten, Herbert; Claudepierre, Seth; Fennell, Joseph; Turner, Drew; Denton, Mick; Spence, H.; Blake, Bernard; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015JA021569

Acceleration; energetic particles; Inner zone; Outer Zone; Radiation belts; Slot region; Van Allen Probes

Formation process of relativistic electron flux through interaction with chorus emissions in the Earth\textquoterights inner magnetosphere

We perform test particle simulations of energetic electrons interacting with whistler mode chorus emissions. We compute trajectories of a large number of electrons forming a delta function with the same energy and equatorial pitch angle. The electrons are launched at different locations along the magnetic field line and different timings with respect to a pair of chorus emissions generated at the magnetic equator. We follow the evolution of the delta function and obtain a distribution function in energy and equatorial pitch angle, which is a numerical Green\textquoterights function for one cycle of chorus wave-particle interaction. We obtain the Green\textquoterights functions for the energy range 10 keV\textendash6 MeV and all pitch angles greater than the loss cone angle. By taking the convolution integral of the Green\textquoterights functions with the distribution function of the injected electrons repeatedly, we follow a long-time evolution of the distribution function. We find that the energetic electrons are accelerated effectively by relativistic turning acceleration and ultrarelativistic acceleration through nonlinear trapping by chorus emissions. Further, these processes result in the rapid formation of a dumbbell distribution of highly relativistic electrons within a few minutes after the onset of the continuous injection of 10\textendash30 keV electrons.

Omura, Yoshiharu; Miyashita, Yu; Yoshikawa, Masato; Summers, Danny; Hikishima, Mitsuru; Ebihara, Yusuke; Kubota, Yuko;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021563

Chorus; nonlinear wave-particle interaction; Particle acceleration; Radiation belts; relativistic electrons; simulation

Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms

Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87\% of the storms, 0.3\textendash2.5 MeV electron fluxes show an increase, whereas 2.5\textendash14 MeV electron fluxes increase in only 35\% of the storms. Superposed epoch analyses suggest that such \textquotedblleftenergy-dependent\textquotedblright responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux dropouts during storm main phases do not correlate well with the flux buildup during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provides a viable candidate for the energy-dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

Xiong, Ying; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Chen, Lunjin; Ni, Binbin; Li, Wen; Li, Jinxing; Guo, Ruilong; Parks, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021440

energy dependence; Geomagnetic storm; Radiation belts; relativistic electrons; Solar wind

Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes

During the small storm on 14\textendash15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then gradually cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution and higher ambient density. These results present the first report on how MS waves penetrate into the plasmasphere with the aid of the continuous proton ring distributions during weak geomagnetic activities.

Xiao, Fuliang; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065745

Geomagnetic storms; magnetosonic waves; proton ring distribution; Radiation belts; Van Allen Probe results; Van Allen Probes; Wave-particle interaction

Combined Convective and Diffusive Simulations: VERB-4D Comparison with March 17, 2013 Van Allen Probes Observations

This study is focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the March 17, 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection, radial diffusion, and energy diffusion are presented. Sensitivity simulations including various physical processes show how different acceleration mechanisms contribute to the energization of energetic electrons at transitional energies. In particular, the range of energies where inward transport is strongly influenced by both convection and radial diffusion are studied. The results of the 4D simulations are compared to Van Allen Probes observations at a range of energies including source, seed, and core populations of the energetic and relativistic electrons in the inner magnetosphere.

Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Spense, Harlan; Reeves, Geoffrey; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065230

inner magnetosphere; numerical simulations; Radiation belts; ring current; Van Allen Probes; wave-particle interactions

Approximate analytical formulation of radial diffusion and whistler-induced losses from a pre-existing flux peak in the plasmasphere

Modeling the spatio-temporal evolution of relativistic electron fluxes trapped in the Earth\textquoterights radiation belts in the presence of radial diffusion coupled with wave-induced losses should address one important question: how deep can relativistic electrons penetrate into the inner magnetosphere? However, a full modelling requires extensive numerical simulations solving the comprehensive quasi-linear equations describing pitch-angle and radial diffusion of the electron distribution, making it rather difficult to perform parametric studies of the flux behavior. Here, we consider the particular situation where a localized flux peak (or storage ring) has been produced at low L < 4 during a period of strong disturbances, through a combination of chorus-induced energy diffusion (or direct injection) at low L together with enhanced wave-induced losses and outward radial transport at higher L. Assuming that radial diffusion can be further described as the spatial broadening within the plasmasphere of this pre-existing flux peak, simple approximate analytical solutions for the distribution of trapped relativistic electrons are derived. Such a simplified formalism provides a convenient means for easily determining whether radial diffusion actually prevails over atmospheric losses at any particular time for given electron energy E and location L. It is further used to infer favorable conditions for relativistic electron access to the inner belt, providing an explanation for the relative scarcity of such a feat under most circumstances. Comparisons with electron flux measurements on board the Van Allen Probes show a reasonable agreement between a few weeks and four months after the formation of a flux peak.

Mourenas, D.; Artemyev, A.; Agapitov, O.V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/2015JA021623

inner belt; Keywords: radial diffusion; Radiation belts; Van Allen Probes

Observations of coincident EMIC wave activity and duskside energetic electron precipitation on 18-19 January 2013

Electromagnetic ion cyclotron (EMIC) waves have been suggested to be a cause of radiation belt electron loss to the atmosphere. Here simultaneous, magnetically conjugate measurements are presented of EMIC wave activity, measured at geosynchronous orbit and on the ground, and energetic electron precipitation, seen by the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign, on two consecutive days in January 2013. Multiple bursts of precipitation were observed on the duskside of the magnetosphere at the end of 18 January and again late on 19 January, concurrent with particle injections, substorm activity, and enhanced magnetospheric convection. The structure, timing, and spatial extent of the waves are compared to those of the precipitation during both days to determine when and where EMIC waves cause radiation belt electron precipitation. The conjugate measurements presented here provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss.

Blum, L.; Halford, A.; Millan, R.; Bonnell, J.; Goldstein, J.; Usanova, M.; Engebretson, M.; Ohnsted, M.; Reeves, G.; Singer, H.; Clilverd, M.; Li, X.;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL065245

electron precipitation; EMIC waves; Radiation belts; Van Allen Probes

Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes

Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13-22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward IMF, showed strong depletion of relativistic electrons (including an unprecedented observation of long-lasting depletion at geostationary orbit) while an immediately preceding, and another immediately subsequent, storm showed strong radiation belt enhancement. We demonstrate with these data that two distinct electron populations resulting from magnetospheric substorm activity are crucial elements in the ultimate acceleration of highly relativistic electrons in the outer belt: the source population (tens of keV) that give rise to VLF wave growth; and the seed population (hundreds of keV) that are, in turn, accelerated through VLF wave interactions to much higher energies. ULF waves may also play a role by either inhibiting or enhancing this process through radial diffusion effects. If any components of the inner magnetospheric accelerator happen to be absent, the relativistic radiation belt enhancement fails to materialize.

Jaynes, A.N.; Baker, D.N.; Singer, H.J.; Rodriguez, J.V.; Loto\textquoterightaniu, T.M.; Ali, A.; Elkington, S.R.; Li, X.; Kanekal, S.G.; Fennell, J.F.; Li, W.; Thorne, R.M.; Kletzing, C.A.; Spence, H.E.; Reeves, G.D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021234

Radiation belts; relativistic electrons; substorms; ULF waves; Van Allen Probes; VLF waves

The effects of geomagnetic storms on electrons in Earth\textquoterights radiation belts

We use Van Allen Probes data to investigate the responses of 10s of keV to 2 MeV electrons throughout a broad range of the radiation belts (2.5 <= L <= 6.0) during 52 geomagnetic storms from the most recent solar maximum. Electron storm-time responses are highly dependent on both electron energy and L-shell. 10s of keV electrons typically have peak fluxes in the inner belt or near-Earth plasma sheet and fill the inner magnetosphere during storm main phases. ~100 to ~600 keV electrons are enhanced in up to 87\% of cases around L~3.7, and their peak flux location moves to lower L-shells during storm recovery phases. Relativistic electrons (>=~1 MeV) are nearly equally likely to produce enhancement, depletion, and no-change events in the outer belt. We also show that the L-shell of peak flux correlates to storm magnitude only for 100s of keV electrons.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Kilpua, E.; Hietala, H.;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL064747

electrons; Van Allen Probes; Geomagnetic storms; Radiation belts

Relativistic electron precipitations in association with diffuse aurora: Conjugate observation of SAMPEX and the all sky TV camera at Syowa Station

It has been believed that whistler mode waves can cause relativistic electron precipitations. It has been also pointed out that pitch angle scattering of ~keV electrons by whistler mode waves results in diffuse auroras. Thus, it is natural to expect relativistic electron precipitations associated with diffuse auroras. Based on a conjugate observation between the SAMPEX spacecraft and the all-sky TV camera at Syowa Station, we report, for the first time, a case in which relativistic electron precipitations are associated with diffuse aurora. The SAMPEX observation shows that the precipitations of >1 MeV electrons are well accompanied with those of >150 and >400 keV electrons. This indicates that electrons in the energy range from several keV to >1 MeV precipitate into the atmosphere simultaneously. Our result supports the idea that whistler mode waves contribute to both generation of diffuse auroras and relativistic electron precipitations.

Kurita, Satoshi; Kadokura, Akira; Miyoshi, Yoshizumi; Morioka, Akira; Sato, Yuka; Misawa, Hiroaki;

Published by: Geophysical Research Letters      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015GL064564

diffuse aurora; Radiation belts; SAMPEX; Syowa Station; whistler mode wave

Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 hours in MLT

Although most studies of the effects of EMIC waves on Earth\textquoterights outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on February 23, 2014 that extended over 8 hours in UT and over 12 hours in local time, stimulated by a gradual 4-hour rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25 nT p-p) appeared for over 4 hours at both Van Allen Probes, from late morning through local noon, when these spacecraft were outside the plasmapause, with densities ~5-20 cm-3. Waves were also observed by ground-based induction magnetometers in Antarctica (near dawn), Finland (near local noon), Russia (in the afternoon), and in Canada (from dusk to midnight). Ten passes of NOAA-POES and METOP satellites near the northern footpoint of the Van Allen Probes observed 30-80 keV subauroral proton precipitation, often over extended L shell ranges; other passes identified a narrow L-shell region of precipitation over Canada. Observations of relativistic electrons by the Van Allen Probes showed that the fluxes of more field-aligned and more energetic radiation belt electrons were reduced in response to both the emission over Canada and the more spatially extended emission associated with the compression, confirming the effectiveness of EMIC-induced loss processes for this event.

Engebretson, M.; Posch, J.; Wygant, J.; Kletzing, C.; Lessard, M.; Huang, C.-L.; Spence, H.; Smith, C.; Singer, H.; Omura, Y.; Horne, R.; Reeves, G.; Baker, D.; Gkioulidou, M.; Oksavik, K.; Mann, I.; Raita, T; Shiokawa, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015JA021227

EMIC waves; magnetospheric compressions; Radiation belts; Van Allen Probes



  1      2      3